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We show the possibility of controlling transient processes at the operating junction 
of a thermoelement by varying the cross section of the branches along its height. 

A number of methods have been proposed for controlling the dynamics of thermoelectric 
cooling, in particular, using a time-variable current as the input of the thermoelement (for 
example, [1-3]). It should be noted that such a method has been found very effective for 
maintaining a prescribed temperature regime under the conditions of transient processes. How- 
ever, in practice the use of such a method is not always possible because it requires a 
rather complex system for regulating the input current. A method for controlling a nonsta- 
tionary temperature regime that is simpler to operate is one based on the use of thermoele- 
ments with branches having suitable nonprismatic shapes. It should be noted that for sta- 
tionary conditions the change in geometric shape produces no effect, since the stationary 
limiting temperature drop is independent of the shape of the branches unless there is an ad- 
ditional heat input [4]. 

We consider the possibility of controlling a nonstationary cooling process by choosing 
the shape of the thermoelement, taking account of the fact that even with a constant current 
input the dynamic characteristics of the thermoelements will vary considerably. 

We calculate the profile of the cross sections of a thermoelement possessing certain 
optimal dynamic characteristics. Suppose that each branch of the thermobattery is a rod with 
a cross section A(x) that varies with the height and having electric and thermal character- 
istics independent of coordinates and temperature. We consider the problem to be one-dimen- 
sional, neglecting the variation in temperature and current density over the cross section. 
Such a simplification is possible when the width of the thermoelement is small in comparison 
to its height. The temperature distribution is described by the heat-conduction equation 
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In a manner analogous to [5], we introduce dimensionless parameters: 
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Fig. i. Variation of the cross section with the 
height of the thermoelement: for Fig. la @ = 0.47; 

= 0.i; i) vo = 0.483; 2) 0.6; 3) 0.8; for Fig. ib 
O = 0.47; vo = 0.6; i) ~ = 0; 2) 0.2. 

Then Eq. (I) and the boundary conditions take the form 
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O;Fo=0 = OIX=I = O0, S(0)= I. (6) 

We consider the problem of optimizing the shape of the branches. We must express the 
dimensionless area s as a function of X in such a way that s(X) and its derivative are con- 
tinuous functions, where for a given length of time Fo the variation of the temperature at 
the cold junction | will differ as little as possible from a given function | As 
the criterion for the close approximation between | 0) and | we select the functional 

Po 
J = .[ [O(Fo, 0) - -O(Fo)128Fo.  (7)  

0 

This problem belongs to the class of problems concerned with the optimal control of sys- 
tems whose behavior is described by partial differential equations [6]. In order to deter- 
mine the necessary optimality conditions, we introduce the associated function v(Fo, X) de- 
fined by the relations 
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The equation for the conjugate function is constructed in a manner analogous to [7]; the Ham- 
iltonian function will have the form 

H - - v [ - - ~ ,  (ii) 

where f is the first part of Eq. (4); fro is the integrand of the functional (7). 

From the condition that H is a maximum we find the necessary conditions for the optimal 

distribution of s(x): 
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Fig. 2. Variation of temperature with time for prismatic 
and optimal shapes: o = 0.47; ~ = 0.i; i) ~o = 0.483; 2) 
0.8; 3) i; 4) 0.483; 5) 0.8; 6) i. 

Fig. 3. Minimized criterion as a function of current: ~ = 
0.47; I) ~ = 0; 2) 0.i; 3) 0.3. 
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The desired distribution of s(x ) will be calculated by an iterative method. To do this, at 
each iteration s(n)(x) (n = 0, i, 2, ...) we calculate the corresponding temperature distri- 
bution| X) and the functions v(n)(Fo, X), after which, by substituting their values 
into the right side of Eq. (12), we find the next approximation s(n+1)(X). As the zeroth 
approximation we take s(~ = const = I. The numerical integration of Eqs. (4)-(6) and 
(8)-(10) is carried out by a finite-difference method for the distribution of s(x). We use 
a four-point difference scheme. The solution of the difference relations is obtained by the 
factorization method [8, 9]. 

We give some results of the calculation for the shape of the branches for the case in 
which the transient process at the operating junction of the thermoelement must approximate 
a stepwise temperature drop in a period of time Fo = 0.7. The quantity | (Fo)was specified 
in the 0.45-0.483 range for | = 0.6. The calculations were carried out for a wide range of 
values of $, ~, and Bi, including zero values, and for a number of values of ~o beginning 
with 0.483 (the optimum value of the current density for a stationary regime in a thermoele- 
ment of prismatic shape). Taking account of the fact that the thermal diffusivity of effec- 
tive thermoelectric materials is 6-8.10 -s cm2/sec, we find that for d = 1 cm the given period 
of time corresponds to about 2 min. 

Figure la shows examples of the optimal curves obtained for s(x) for three current den- 
sity values vo, other parameters being equal. It was found that the cross section of the 
thermoelement must increase sharply near the operating junction, within limits of 10% of the 
branch height. Then the cross section decreases and varies very little with height until we 
reach a value X ~ 0.75. The optimal value of s increases sharply near the hot junction~ In 
the manufacture of thermoelements with variable branch cross section it must be taken into 
account:that this segment has only a slight effect on the temperature at the operating junc- 
tion for short cooling periods, and therefore when X > 0.75, we can take s = const. The 
graphs in Fig. la may be explained as follows. As the current vo increases, there is an in- 
crease in the power of the Joule heat source at the junction (for X = 0 and ~ # 0) and in the 
volume of the element. Therefore, the corresponding optimal values of s(x) will increase 
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with increasing ~ when X > 0, and this leads to reduced Joule heat generation at each cross 
section. 

Figure ib shows data characterizing the variation of the optimal shape when there is 
contact resistance. It follows from the figure that as the contact resistance ~ increases, 
we must increase the" cross section of the element near the cold junction, thereby compensat- 
ing for the increase inthe power of~the Joule heat source at~the~ junction by a decrease in 
the volumetric heat generation near the junction. 

The variation of temperature with time for various values of ~o is shown in Fig. 2 
[curves 4, 5, and 6 are for optimal s(x), and curves i, 2, and 3 are for a ~thermoelement with 
prismatic branches]. The behavior of the curves shows that as the current density increases, 
so does the cooling rate. However, there is an optimal current density (~o ~ 0.8) for which 
the difference between the specified ~(Fo) = 0.47 and the actual | is minimal. 

Figure 3 gives a family of curves showing how the mean-square deviation expressed by 
the functional J varies with the current density ~o for various values of contact resistance. 
From the data shown we can see that the value of the minimized functional first decreases 
with increasing ~o and then increases. This increase is due to the fact that for high cur- 
rent densities there is a considerable temperature drop, exceeding the required value even 
for small values of time. When there is no contact resistance ~, the functional J monotonic- 
ally decreases as the current increases (curve i). 

As a reference value, we select the value of the functional Jo calculated for a thermo- 
element of prismatic shape [s(x) = const]. From a comparison of Jo with the Values of J cal- 
culated for the optimal shape it can be seen that J can decrease to i0-20% of Jo. It should 
also be noted that because the cross section s(X) varies with height in the nonstationary 
regime, when the current is constant with respect to time, the temperature drop, as can be 
seen from Fig. 2, may considerably exceed the limiting level attained in the stationary re- 
gime (~stat = 0.483 for | = 0.6). ~mln 

In addition to being faster, this method enables us to calculate the shape of a thermo- 
element for reproducing a prescribed temperature variation. For example, it is possible to 
produce a thermoelement of such shape that for constant current the temperature will decrease 
almost linearly in a certain interval of time. 

NOTATION 

T, absolute temperature; t, time; x, length coordinate; d, height of thermoelement; i, 
current intensity; X, c, Q, thermal conductivity, volumetric heat capacity, and resistivity 
of the thermoelement branches, respectively; e, coefficient of thermo-emf of the thermocouple; 
z = e2/0X, thermoelectric quality factor; a, convective heat-transfer coefficient; g, heat 
capacity of the switching plate and the cooled object; Oc, contact resistance (the values of 
a, g, and 0c are those for a unit working surface). 
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